R/ctwas_summarize_regions.R
estimate_region_L.Rd
Estimate L for all regions by running finemapping with uniform prior
estimate_region_L(
region_data,
LD_map,
weights,
init_L = 5,
min_abs_corr = 0.1,
snps_only = FALSE,
LD_format = c("rds", "rdata", "mtx", "csv", "txt", "custom"),
LD_loader_fun,
ncore = 1,
verbose = FALSE,
...
)
a list object indexing regions, variants and genes.
a data frame with filenames of LD matrices for each of the regions.
a list of preprocessed weights.
upper bound of the number of causal signals
Minimum absolute correlation allowed in a credible set.
If TRUE, use only SNPs in the region data.
file format for LD matrix. If "custom", use a user defined
LD_loader_fun()
function to load LD matrix.
a user defined function to load LD matrix when LD_format = "custom"
.
The number of cores used to parallelize susie over regions
If TRUE, print detail messages
Additional arguments of susie_rss
.
a vector of estimated L for all regions