Estimate L for all regions by running finemapping with uniform prior

estimate_region_L(
  region_data,
  LD_map,
  weights,
  init_L = 5,
  min_abs_corr = 0.1,
  snps_only = FALSE,
  LD_format = c("rds", "rdata", "mtx", "csv", "txt", "custom"),
  LD_loader_fun,
  ncore = 1,
  verbose = FALSE,
  ...
)

Arguments

region_data

a list object indexing regions, variants and genes.

LD_map

a data frame with filenames of LD matrices for each of the regions.

weights

a list of preprocessed weights.

init_L

upper bound of the number of causal signals

min_abs_corr

Minimum absolute correlation allowed in a credible set.

snps_only

If TRUE, use only SNPs in the region data.

LD_format

file format for LD matrix. If "custom", use a user defined LD_loader_fun() function to load LD matrix.

LD_loader_fun

a user defined function to load LD matrix when LD_format = "custom".

ncore

The number of cores used to parallelize susie over regions

verbose

If TRUE, print detail messages

...

Additional arguments of susie_rss.

Value

a vector of estimated L for all regions