This function implements rare variant test only at variant level
mirage_vs(
data,
n1,
n2,
gamma = 3,
sigma = 2,
eta.init = 0.1,
estimate.eta = T,
fixed.eta = NULL,
max.iter = 10000,
tol = 1e-05,
verbose = TRUE
)
variant count data, a 4 column data frame for column 1: variant ID 2: No.variant in cases 3 No.variant in control 4 variant group index
sample size in cases.
sample size in controls.
a list of category specific hyper prior shape parameter in Beta distribution for effect size, or a numeric value if all category share the same effect size.
a list of category specific hyper prior scale parameter in Beta distribution for effect size, or a numeric value if all category share the same effect size.
initial value for prior on proportion of risk variants in a variant set.
When TRUE eta is to be estimated and FALSE eta is fixed.eta MUST be provided and BF per gene will be reported.
fixed.eta must be provided when estimate.eta is false
maximum number of iterations enforcing EM algorithm to stop
threshold of parameter estimate difference to determine the convergence of EM algorithm
Estimate for proportion of risk variants in a variant group and p values
Posterior probabilities
# see example at https://xinhe-lab.github.io/mirage/articles/mwe.html